祝融星 ,也作火神星,是一個假設(shè)在太陽與水星之間運行的行星,這個十九世紀的假設(shè)被愛因斯坦的廣義相對論所排除。如今, 祝融星早已被人遺忘,最多不過 科學史中的一則花邊新聞,是我們的先輩犯過的又一個錯誤,而我們現(xiàn)在對它有了更深的理解。 但對于如何面對科學中的失敗這一問題,在科學革命甫一開始便很棘手,至今依然如此。 我們或許,也的確比古人知道得更多,但并不能因此就免于落入思維的窠臼和想象的瓶頸,也不能避免前人的錯誤。 人類具有發(fā)現(xiàn)和自我欺騙的雙重能力,祝融星的故事就是這樣的一個例子。 它提供了一個機會,告訴我們認識真實的自然界有多么不容易,改變固有的觀念是多么困難。
1915年11月18日,柏林
一個從西郊來的男人正在趕路,他的目的地是城中心。這個男人的頭發(fā)通??傆幸恍┡顏y(這頭蓬亂的頭發(fā)未來將和他本人一樣出名),但今天卻因為一場公開講座而被收拾得相當服帖。他走上菩提樹下大街,這條大街穿過勃蘭登堡門,向東一直延伸到施普雷河。他徑直走進菩提樹下大街8號,這里通往普魯士科學院。
這是一戰(zhàn)打響后的第二年,秋天的一個星期四??茖W院的成員們趕來聆聽一場學術(shù)講座。這個系列講座一共有四場,這一天進行的是第三場。這個系列講座的主講人是他們的一位新同事,這位尚年輕的男子走到房間前方,掏出他的筆記 —僅僅是幾頁稿紙,就開始了演講。
這位年輕人便是阿爾伯特·愛因斯坦,當天的演講以及隨后一周進行的又一次演講,成就了這位20世紀最偉大的天才。我們現(xiàn)在把他的這些思想稱為廣義相對論:這是關(guān)于引力的理論,也是宇宙學的基礎(chǔ)。宇宙學是把宇宙作為一個整體,研究它的誕生和演化的學科。愛因斯坦的結(jié)果標志著孤獨思考者的勝利:他戰(zhàn)勝了同行的偏見與懷疑,也超越了歷史上最著名的科學家,艾薩克·牛頓爵士。
雖然愛因斯坦的理論橫掃一切,但在18日那天的演講中,他只重點講了一個小東西:水星。這是當時已知的最小行星。具體說來,他講的是水星軌道原因不明的微小異常——科學家觀測到水星的軌道不太穩(wěn)定。但是直到愛因斯坦的演講之前,關(guān)于水星軌道的異常現(xiàn)象,科學家一直沒有合理的解釋。
到1915年為止,水星這種不安分的行為已經(jīng)被發(fā)現(xiàn)了六十余年了。在這期間,天文學家在探索水星古怪行為的道路上越走越遠。一切工作都建立在牛頓引力理論的經(jīng)典框架內(nèi)(這是科學革命最偉大的勝利),對此最早、看上去也最明顯的解釋是,在太陽的烈焰附近隱藏著一顆全新的行星,它產(chǎn)生了足夠大的引力,使水星偏離了“正確”的軌道。
行星由于受到干擾而偏離軌道是個完全合理的假設(shè)。事實上,的確存在這樣的先例,最初看起來不合邏輯,但最終被證明是正確的。隨著水星軌道問題變得眾所周知,業(yè)余愛好者和職業(yè)天文學家都熱衷于在太陽的光芒中探尋和辨認這顆“潛伏”著的行星。在二十多年的時間里,它被反復發(fā)現(xiàn)了十多回。人們計算了它的軌道,根據(jù)古老記錄中無法解釋的天象還原了它的歷史,甚至還賦予了它名字:祝融星(Vulcan)。
然而,唯一的問題是:這顆行星,從來都不存在。
在一戰(zhàn)爆發(fā)后,第二年11月的第三個星期四,愛因斯坦終結(jié)了祝融星的歷史。為了提出這個全新的引力圖景,愛因斯坦花費了近十年光陰。在新圖景中,物質(zhì)和能量告訴空間和時間如何彎曲,而空間和時間告訴物質(zhì)和能量如何運動。在那個星期四下午,愛因斯坦向同事展示了他的證明:考慮相對論效應后,水星貌似“偏離”,實則遵循它的自然軌道。這個結(jié)果在經(jīng)過一系列的數(shù)學推理后浮現(xiàn)出來,是客觀事物服從于數(shù)學的完美結(jié)果。
在此背景下,祝融星成為廣義相對論的第一個測試對象,它的命運決定了愛因斯坦的理論是否真正洞察了我們這個宇宙的某些運行方式。但要做到這一點,也就是通過古怪的廣義相對論來預測祝融星的命運,需要大膽而又精細的推理:愛因斯坦奮斗了八年多才了結(jié)了這顆幽靈之星。這一部分故事充分展現(xiàn)了一個思考者需要具備多強的能力,才可以在前人的智慧之上獨自做出偉大的發(fā)現(xiàn)。
通常,愛因斯坦是一個相當冷靜的人,但在這一件事上,他極為激動。他告訴朋友,當完成水星軌道計算、看到正確的數(shù)字出現(xiàn)在一長串單純的推理之后,發(fā)現(xiàn)自己的方程輕而易舉地就解決了水星的運動問題時,他整個人仿佛被擊中了。他感到心跳加速:“好像有什么東西從身體里迸發(fā)出來。”
祝融星早已成為過去,幾乎完全被今人遺忘。從今天看來,那可能只是科學界的花邊新聞,是我們的先輩犯過的又一個錯誤,而我們現(xiàn)在對它有了更深的理解。但對于如何面對科學中的失敗這一問題,在科學革命甫一開始便很棘手,至今依然如此。我們或許,也的確比古人知道得更多,但并不能因此就免于落入思維的窠臼和想象的瓶頸,也不能避免前人的錯誤。人類具有發(fā)現(xiàn)和自我欺騙的雙重能力,祝融星的故事就是這樣的一個例子。它提供了一個機會,告訴我們認識真實的自然界有多么不容易,改變固有的觀念是多么困難。
摒棄經(jīng)驗,擁抱新知。當我們這樣做的時候,這便是一個越發(fā)有趣的傳奇。
1684年8月,劍橋
埃德蒙·哈雷( Edmond Halley)剛剛經(jīng)歷了一個悲傷而又焦躁的春天。3月,他的父親失蹤了。在斯圖亞特王朝統(tǒng)治的最后幾年中,政局混亂,這算不上多么稀奇的事。哈雷的父親在五個星期之后被發(fā)現(xiàn),當時已經(jīng)死亡,也沒有留下任何遺言。在接下來的幾個月里,年輕的哈雷不得不處理麻煩的后事:教區(qū)牧師欠他父親12英鎊;作為房地產(chǎn)交易費用的一部分,每年要付給一位女士 3英鎊;還要收租、安撫托管人。這些痛苦的差事幾乎耗費了哈雷整個夏天。最后,他還必須跑到劍橋鎮(zhèn),當面處理一些在倫敦理不清的細節(jié)。
這趟旅行起初沒有什么快樂可言,但交代清楚那些法律事務之后,意想不到的好運找上了他。早在1月,哈雷遭遇這些變故之前,他巧妙地對天體進行了分析,計算表明,驅(qū)使行星圍繞太陽運行的作用力滿足這樣一種性質(zhì):力的大小與它們到太陽的距離的平方成反比。但緊接著問題就來了,這個被稱為平方反比定律的數(shù)學表達,可以解釋我們觀測到的所有行星的運動軌道嗎?
這看起來只是個技術(shù)問題,但歐洲最聰明的頭腦意識到,它將帶來一場變革。平方反比定律的確成了科學革命的高潮,在那場漫長的斗爭中,數(shù)學取代拉丁語成為科學的語言。1684年1月14日,哈雷和兩位老友在一次皇家學會會議之后聊了起來。這兩位分別是博學的羅伯特 ·胡克( Robert Hooke)和皇家學會前任主席克里斯托弗·雷恩( Christopher Wren)爵士。當他們把話題轉(zhuǎn)到天文學的時候,胡克宣稱他已經(jīng)得出了指導宇宙萬物運動的平方反比定律。雷恩不相信他,因此用一本在今天價值300美元的書作為賭注:哈雷和胡克之中,如果誰能在兩個月之內(nèi)給出這一定律的嚴格證明,誰就能得到這本書。哈雷很快就承認無法做到,而胡克盡管虛張聲勢,卻也沒能在雷恩的截止日期之前提供書面的證明。
事情就卡在了這里,直到哈雷與親屬一起料理完父親的后事。當時,哈雷就在倫敦東邊的劍橋 —為什么不順路去劍橋大學呢?在那里至少可以享受一下午討論自然哲學的樂趣,緩解之前的悲傷與煩躁。哈雷走入圣三一學院,大門的左側(cè)是學院廣場,右側(cè)的樓梯把哈雷領(lǐng)到一個房間。在這里面的,正是盧卡斯數(shù)學教授 —艾薩克·牛頓。
對牛頓的大部分同時代人來說,1684年的夏天是一個謎。倫敦的自然哲學家們往往視牛頓為智慧非凡的圣人,但哈雷是牛頓為數(shù)不多的熟識的人,更是他寥寥無幾的朋友之一。關(guān)于牛頓工作的公開記錄非常稀有。他的名望基于少數(shù)幾個杰出的研究結(jié)果,這些成果大部分都體現(xiàn)在17世紀70年代初他寫給皇家學會秘書的信件中。牛頓暴躁、驕傲,動輒就生氣,還記仇。早年間,他與胡克的糾紛讓他不愿意再冒險進行煩人的公開辯論;往后的10年間,他的大部分研究成果都沒有公開。因此,正如為他立傳的傳記作家理查德 ·韋斯特福爾( Richard Westfall)所言,如果牛頓死于1684年的春天,那他為人們所記住的將是他非凡的天賦和古怪的性格,僅此而已。但那些到三一學院巨庭( Great Court)東北角房間訪問的人卻會發(fā)現(xiàn),這里有一顆熱情的、整個歐洲都無人能與之匹敵的頭腦。
上流社會的肖像畫家內(nèi)勒(Godfrey Kneller)于 1689年為牛頓繪的肖像,這是已知最早的牛頓肖像
很久之后,牛頓同另一位朋友提到那個夏天哈雷到訪的故事。如果老年牛頓的記憶還不錯的話,他當時和哈雷寒暄了好一陣。但最終,哈雷拋出了從1月開始就困擾自己的問題:平方反比會產(chǎn)生什么結(jié)果?“假設(shè)行星指向太陽的引力與它到太陽的距離的平方成反比”,那么行星的軌道曲線會是什么形狀?
“橢圓。”牛頓立即回答道。
哈雷“簡直呆住了”,他問牛頓為何如此確定。
埃德蒙·哈雷,由穆雷(Thomas Murray)繪于《原理》出版期間
“我計算過。”牛頓回答道。當哈雷要求看一看手稿的時候,牛頓在自己的筆記中翻找起來。但那一天,牛頓表示他沒能找到那份筆記。他答應找到之后馬上把結(jié)果寄給在倫敦的哈雷。幾乎可以肯定的是,牛頓當時有所隱瞞。相關(guān)的計算后來在他的論文里被發(fā)現(xiàn)。當哈雷急切地在房間里等待的時候,牛頓其實可能已經(jīng)意識到,他原來的設(shè)想有錯誤。
沒關(guān)系。牛頓重新進行了計算,并且加緊努力。11月,他將滿滿9頁的數(shù)學推導寄給了哈雷,標題是《論物體在軌道上的運動》(De motu corporum in gyrum)。這篇論文證明了人們后來熟知的“牛頓萬有引力定律”(平方反比關(guān)系)。該定律要求,在特定的情況下,天體圍繞另一天體運動的軌跡必須是橢圓,太陽系中行星的軌道就是這樣。此外,牛頓還進一步地勾畫了一般的運動學雛形:一組定律橫空出世,它們描述了宇宙萬物的運動行為 —何時、何地、如何運動。
這9頁紙的內(nèi)容超越了哈雷最初的期待。他讀完后立刻明白了這其中更為深刻的意義:牛頓不僅僅解決了行星動力學中的一個問題,他還勾畫出更加宏偉的圖景 —宇宙萬物運動的新科學。
牛頓抓住了面前的機會。他是出了名的沉默寡言的人,甚至到了神秘的地步 —最近十多年幾乎沒發(fā)表過任何東西。但這一次,他在哈雷的鼓勵下“投降”了,開始著書,明確地向世人講述自己掌握的知識。在接下來的三年里,牛頓基于量化的物理定律發(fā)展了一套描述自然的方法,并將這些思想應用于一系列運動問題。完成書的前兩部分后,牛頓將手稿交給哈雷。他知道,這將是一本劃時代的書。哈雷當仁不讓地肩負起了雙重責任:一方面整理牛頓密密麻麻的數(shù)學內(nèi)容準備付印,另一方面不斷地激勵牛頓繼續(xù)寫作。1687年,哈雷收到了牛頓寄來的第三部分,也是著作的終卷,他毫不謙虛(但很準確)地將這部分命名為《論宇宙的體系》(英語為“ On the system of the world”)。
這部著作的主要內(nèi)容是對包羅萬象的新科學進行闡釋論證,書中所有的方程、幾何圖示、證明細節(jié)都用于描述運動。牛頓還由此對整個星空的行為做了詳細的、數(shù)學上的精確描述:從木星的衛(wèi)星開始,到整個太陽系,最后回到我們所生活的地球。書中優(yōu)雅地展示了地球表面復雜的潮汐現(xiàn)象是如何產(chǎn)生的:牛頓通過嚴格的科學計算得出,海水的潮漲潮落源自月球引力和太陽引力的相互博弈。
牛頓本可以就此打住,這也合情合理。讀者已經(jīng)來到了迄今為止最偉大的故事的自然結(jié)尾:上至蒼穹,那些圍繞木星運動的、肉眼看不見的小星星;下至我們的家園地球, “沿途”景觀都能由幾個簡潔的定律描述。
話雖如此,但在把最后幾頁手稿交付給哈雷之前,牛頓選擇繼續(xù)耕耘。他和哈雷最初因彗星而結(jié)緣:初次見面之前,他倆就都追蹤過 1682年出現(xiàn)的那顆明亮的彗星,即現(xiàn)已廣為人知的哈雷彗星。但在牛頓寫作的最后幾個月,另一個天體引起了他的注意:1680年大彗星。這顆彗星最先由德國天文學家、日歷出版商戈特弗里德·基爾希(Gottfried Kirch)發(fā)現(xiàn)。
從某種意義上來說,基爾希的彗星算得上是科學革命的里程碑。就在1680年11月14日夜晚,基爾希開始了他的常規(guī)觀測。他正在尋找某些全新的目標,并在星圖上描繪它們的位置。這是他長期觀測計劃中的一部分。那天夜里,一切都按照以往的步驟進行著:基爾希將望遠鏡指向第一個目標,記錄位置,并標注在星圖上;然后將望遠鏡稍稍偏了一下,于是他就有了新發(fā)現(xiàn):“一個模糊的斑點,看起來不同尋常。”他被激起了好奇心,對這個目標跟蹤了好長一陣才確定,他發(fā)現(xiàn)的不是一顆恒星,而是太陽系中的流浪漢 —彗星。這是人類首次使用望遠鏡發(fā)現(xiàn)彗星。
對牛頓來說,1680年大彗星提供了一個獨特的機會。利用新的數(shù)學定律,他已經(jīng)分析出行星軌道的形狀 —但這個過去未知的訪客挑起了新的問題:牛頓的萬有引力可以用于描述之前沒發(fā)現(xiàn)過的天體的運動嗎?牛頓首先利用幾份可信的觀測報告,畫出基爾希彗星的路徑:他用線將每個觀測位置連接起來,以獲得運動軌跡。結(jié)果顯示,這是一條特殊的曲線:拋物線。牛頓之前分析過的行星、月球的軌道都是橢圓。拋物線與橢圓在數(shù)學上有相似之處,二者的主要區(qū)別在于橢圓是封閉曲線,地球、行星、哈雷彗星、美國納斯卡車賽(NASCAR)都會在橢圓的軌跡上繞圈;拋物線卻不是這樣,它是開放的:在遙遠 的起點處接近于直線,在焦點(對1680年大彗星來說,焦點就是太陽)附近拐彎,然后再次向遠處延伸。沿著拋物線運動的天體離開之后就再也不會重回故地了。
牛頓盡力使每位讀者都能真正地理解,1680年大彗星沿著拋物線進入太陽系并離開。在長篇巨著的最后,他用了好些篇幅來書寫彗星“獵手”的觀測細節(jié)。他事無巨細的描述,似乎沒給任何人留下質(zhì)疑的余地。最后,沒有人還會懷疑這個事實:1680年大彗星從遙遠的地方呼嘯而來,繞過太陽之后慢慢遠離,消失在觀測所及之外,再也不會回來。
接著,牛頓進行了最后的精彩展示。他僅僅從觀測記錄中抽取了三條,也就是彗星軌道上的三個點,利用力和運動的數(shù)學模型,計算出那顆彗星的軌道。計算結(jié)果完美地符合所有觀測連成的軌跡:一條拋物線。拋開復雜的技術(shù) —圓錐曲線和難懂的微積分 —不談,這一結(jié)果不光是牛頓本人的勝利,也是理解物質(zhì)世界新方法的勝利。
關(guān)于1680年大彗星的篇章讓他的著作達到了巔峰,漂亮地證明了相同的定律可以普遍應用于 —蘋果落地、弓箭飛行、月亮不變的軌跡 —宇宙的一切,萬物盡在基本定律的限制之下。拋物線無始無終:一端開始于無限遠處,另一端結(jié) 束于同樣的無窮遠。在物質(zhì)世界中,彗星圍繞太陽的運動形成了這條曲線。1680年大彗星的拋物線運動軌道不僅發(fā)生在我們身邊,而且穿越了整個宇宙 —從宇宙深處而來,再回到宇宙深處。
牛頓完全清楚自己的成就。他在有關(guān)彗星一節(jié)的結(jié)尾處寫道:“這一理論與跨越宇宙的不同尋常的軌道相符,與行星運動理論的規(guī)律一致,與天文觀測完美吻合。這樣的理論完全沒有可能不成立。”
哈雷完全贊同。三年之前,他向牛頓尋求的僅僅是一個簡單的證明;三年之后,他為牛頓交付印刷了這本巨著的最后部分。這部巨著的名字同樣毫不謙虛,但是準確——《自然哲學的數(shù)學原理》(Philosophiae Naturalis Principia Mathematica,以下簡稱《原理》)。自1684年開始,哈雷無暇自己的工作,全身心地投入到整理牛頓的大量手稿中,并處理與這位壞脾氣的作者相關(guān)的事情。但現(xiàn)在,在終點線上,哈雷收獲了他自己的勝利?!对怼烦霭娴臅r候,哈雷運用自己身為編輯的特權(quán),為牛頓的史詩撰寫了序言。他用詩意的語言高度評價了這本著作和它的作者:“我們此刻獲準加入眾神的盛宴/我們已然運用天上的律法行事;我們用/秘密的鑰匙開啟了幽微的大地;我們洞悉了牢不可破的世界秩序/……和我一起歌唱牛頓,他揭開了這一切/他打開了真理的寶盒。”
第一版《原理》的封面
寶盒中的真理樸素直白,無須詩意。在所有關(guān)于神與天空的言論中,哈雷無疑是對的。牛頓許諾給讀者一個世界體系,而讀者實際收獲的恰恰是一種研究運動的方法。它的適用范圍貫穿整個宇宙,直到時空盡頭。正如 18世紀偉大的法國數(shù)學家約瑟夫·路易 ·拉格朗日( Joseph Louis Lagrange)所說:“牛頓是有史以來最偉大的天才,也是最幸運的一個。因為我們無法再為世界找到別的體系了。”
艾薩克·牛頓爵士于1727年去世。亞歷山大·蒲柏( Alexander Pope)獻上了那段著名的悼詞:“自然和自然的規(guī)律隱沒在黑暗中/上帝說,讓牛頓去吧!于是便有了光明。”直到下一個世紀之交來臨之前,蒲柏夸張的詩句看起來也不過是英國式的謙遜。